Multifunctional nanostructured Ti-Si-C thin films
نویسندگان
چکیده
In this Thesis, I have investigated multifunctional nanostructured Ti-Si-C thin films synthesized by magnetron sputtering in the substrate-temperature range from room temperature to 900 °C. The studies cover high-temperature growth of Ti3SiC2 and Ti4SiC3, low-temperature growth of Ti-Si-C nanocomposites, and Ti-Si-C-based multilayers, as well as their electrical, mechanical, and thermal-stability properties. Ti3SiC2 and Ti4SiC3 were synthesized homoepitaxially onto bulk Ti3SiC2 from individual sputtering targets and heteroepitaxially onto Al2O3(0001) substrates from a Ti3SiC2 target at substrate temperatures of 700 – 900 °C. In the latter case, the film composition exhibits excess C compared to the nominal target composition due to differences between species in angular and energy distribution and gas-phase scattering processes. Ti buffering is shown to compensate for this excess C. The electricalresistivity values of Ti3SiC2 and Ti4SiC3 thin films were measured to 21-32 μΩcm and ~50 μΩcm, respectively. The good conductivity is because the presence of Si layers enhances the relative strength of the metallic Ti-Ti bonds. The higher density of Si layers in Ti3SiC2 than in Ti4SiC3 explains why Ti3SiC2 is the better conductor of the two. Ti3SiC2 thin films are shown to be thermally stable up to 1000 – 1100 °C. Annealing at higher temperature results in decomposition of Ti3SiC2 by Si out-diffusion to the surface with subsequent evaporation. Above 1200 °C, TiCx layers recrystallized. Nanocomposites comprising nanocrystalline (nc-)TiC in an amorphous (a-)SiC matrix phase were deposited at substrate temperatures in the range 100 – 300 °C. These nc-TiC/a-SiC films exhibit low contact resistance in electrical contacts and a ductile deformation behavior due to rotation and gliding of nc-TiC grains in the matrix. The ductile mechanical properties of nc-TiC/a-SiC are actually more similar to those of Ti3SiC2, which is very ductile due to kinking and delamination, than to those of the brittle TiC. Epitaxial TiC/SiC multilayers deposited at ~550 °C were shown to contain cubic SiC layers up to a thickness of ~2 nm. Thicker SiC layers gives a-SiC due to the corresponding increase in interfacial strain energy leading to loss of coherent-layer growth. Nanoindentation of epitaxial Ti3SiC2/TiC0.67 nanolaminates showed inhibition of kink-band formation in Ti3SiC2, as the lamination with the less ductile TiC effectively hindered this mechanism.
منابع مشابه
Pulsed laser deposition and characterization of Bi3.25Nd0.75Ti3O12 thin films buffered with La0.7Sr0.3MnO3 electrode
Bi3.25Nd0.75Ti3O12 (BNT) ferroelectric thin films with a thickness of f0.5 Am, on substrates of Pt/Ti/SiO2/Si, (100) SrTiO3 and (100) MgO, with a 0.4-Am-thick La0.7Sr0.3MnO3 (LSMO) layer as bottom electrode, were deposited via pulsed laser deposition. The multilayer thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical measurement. The LSMO ...
متن کاملStructure and thermal stability of arc evaporated ( Ti 0 . 33 Al 0 . 67 ) 1 − xSixN thin films
Ti0.33Al0.67)1-xSixN (0≤x≤0.29) thin solid films were deposited onto cemented carbide substrates by arc evaporation and analyzed using analytical electron microscopy, X-ray diffraction, nanoindentation, and density functional theory. As-deposited films with x≤0.02 consisted mainly of a metastable c-(Ti,Al)N solid solution for which Si serves as a veritable grain refiner. Additional Si promoted ...
متن کاملStructural characteristics and tribological properties of TiAlCr(Si)CN nanocomposite films coated on the SPK 1.2080 tool steel using PVD technique
In the present work, structural characteristics and tribological properties of the Ti-Al-Cr-(Si)-C-N nanocomposite films coated on the SPK 1.2080 tool steel byPVD technique have been investigated. The PVD coating process was carried out using Ti (Si) Al and CrAl cathodes at 150 A current, 40 V bias and (Ar)0.1(CH4)0.45(N2)0.45 gas mixture for 50 min. Evaluations were conducted by OM, FESEM, AFM...
متن کاملAnnealing Temperature Effects on the Optical Properties of MnO2: Cu Nanostructured Thin Films
In this work, the effect of annealing temperature on the microstructure, morphology, and optical properties of Cu-doped nanostructured MnO2 thin films were studied. The thin films were prepared by sol-gel spin-coating technique on glass substrates and annealed in the air ambient at 300, 350, 400 and 450 °C temperatures. The structural, morphological and optical properties of t...
متن کاملSrTiO3 buffering effect on Pb12xLaxTiO3 thin films prepared by pulsed laser deposition
Thin films of phase-pure perovskite PLT (Pb0.95La0.05Ti0.9875O3) were deposited in situ onto Si, Pt/Ti/SiO2 /Si, and SrTiO3 /Si substrates by pulsed laser deposition from stoichiometric targets. No Pb loss was observed in the near-surface region. The blocking of the interdiffusion between inner Si substrate and the outer PLT films by SrTiO3 buffer layer was evidenced using x-ray diffraction ~XR...
متن کامل